endo-SLAM outline

2024年08月13日

Endo-Slam outline

Relative work

mermaid-diagram-2024-08-15-184011

mermaid-diagram-2024-08-15-184011

激光测距                                                三角测距
结构光三维重建

数据集

主流测试公开数据集 C3VDSimCol

临床应用场景

  1. 消化道与病灶三维可视化
    • 实时重建
    • 可无级切换三维模型的观察视角
  2. 病灶范围计算

难点

  1. 镜面反射容易发生过曝光和欠曝光,比如反光表面
  2. 半透明物体,如积液区域,将影响特征提取与特征匹配
  3. 表面均色,将无法提取特征点
  4. 高度非线性的器官变形
  5. 场景杂波,如气泡、流体、血液
  6. 定位漂移现象随重建序列变多而越明显
  7. 图像质量:镜头移动过快造成二维图像有拖影
  8. 现有标注数据均通过模型实验获取或计算机建模获取,与临床内镜视频数据有较大差距

论文

重要论文与算法

特征提取

SLAM算法改进

自监督网络

  • 2020 EndoSLAM dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic代码

    • 内窥镜 SLAM 数据集,该数据集由六个猪器官的三维点云数据、胶囊和标准内窥镜记录、和计算机断层扫描(CT)扫描地面实况组成。从八个活体猪胃肠道器官和一个硅胶结肠模型中收集数据。总共提供了 35 个子数据集,其中体内部分为 6D 姿态Ground Truth:其中 18 个子数据集用于结肠,12 个子数据集用于胃,5 个子数据集用于小肠,而其中 4 个子数据集包含息肉。无监督的单目深度和姿态估计方法,它将残差网络与空间注意力模块相结合,以指示网络关注可区分的高纹理组织区域。

    image-20240814150736167

  • 2021 Endo-Depth-and-Motion: Reconstruction and Tracking in Endoscopic Videos using Depth Networks and Photometric Constraints代码】补充资料:Depth from Motion

    • 利用自监督深度网络生成伪 RGBD 帧,然后跟踪相机姿态。

    The interest for applying SfM/SLAM in intracorporeal sequences has risen following the advances of the field, but encounters the challenges mentioned before. Early monocular approaches were based on the Extended Kalman Filter [36], [37]; and more recent ones on non-linear optimization for tracking and mapping [6] and map densification using variational approaches [38] or multi-view stereo [39]. These methods were strongly based on the rigidity assumption. MIS-SLAM [40], [41] was the first bringing deformable SLAM to intracorporeal images. It uses a canonical shape, as DynamicFusion [42], integrating stereo observations in a Truncated Signed Distance Function (TSDF) [43] with a deformation model. It uses the rigid tracking of ORB-SLAM2 [2] to estimate the camera pose between keyframes. DefSLAM [44] was the first monocular SLAM fully addressing deformations in monocular endoscopies. SD-DefSLAM [45] improves over it incorporating an illumination-invariant Lukas-Kanade tracker, relocalization and tool segmentation. Both of them use at their core an isometric NRSfM (IsoNRSfM) [10] over a sliding window and a robust deformation tracking inspired in [46]. Although IsoNRSfM models intracorporeal deformations, it assumes that the scene is a continuous surface, which does not hold for many in-body scenes. In addition, even in [45], feature correspondence keeps being a challenge. As another drawback, deformable tracking is computationally demanding. Compared to them, our Endo-Depth can be a fair substitute of IsoNRSfM for deformable SLAM. And, under the assumption of slow deformations, our high-keyframe-rate odometry allows Endo-Depth-and-Motion to achieve long tracks in both rigid and deformable in-body sequences.

    example input output gif

  • 2021 Self-Supervised Monocular Depth and Ego-Motion Estimation in Endoscopy: Appearance Flow to the Rescue

    • 自监督单目深度估计框架 腹腔镜
  • 2023 Self-supervised monocular depth estimation for gastrointestinal endoscopy

    • 一种自监督神经网络框架+双注意力机制,并行预测分支获得的深度信息和姿态信息重建图像,重建后的图像作为自监督信号指导网络模型训练。
  • 2024 MonoLoT: Self-Supervised Monocular Depth Estimation in Low-Texture Scenes for Automatic Robotic Endoscopy代码

    • 自监督单目深度估计框架

临床实验